Energie nucléaire
Voir l'animation sans FlashPlan du site
Tous les textes du site
Crédits
Accueil
![]()
![]()
EPR : amorce de renouvellement du parc nucléaire
Tout comme les réacteurs nucléaires de la génération précédente, l’EPR est un réacteur à eau pressurisée. Il consiste en un cœur rempli d’eau sous une pression de 155 bars, dans lequel des barreaux d’uranium enrichi, c’est-à-dire contenant 3 à 5 % d’uranium 235, sont soumis à un flux intense de neutrons, de telle sorte qu’ils se fragmentent en libérant de nouveaux neutrons – gage d’une réaction en chaîne – et de l’énergie. Evacuée par l’eau qu’elle contribue à chauffer, cette énergie permet ensuite de produire de la vapeur qui alimente une turbine destinée à la production d’électricité.
Ainsi, l’EPR ne constitue pas une rupture technologique par rapport à l’existant. Pour autant, aux dires de ses promoteurs, son intérêt réside dans sa très grande sûreté, concrètement liée à sa plus grande étanchéité et au renforcement de ses systèmes de secours en cas d’accident. Ses détracteurs, eux, le jugent trop complexe. Ainsi, son rival direct, l’américain AP-1000, est d’une conception allégée et plus simple de construction. Du reste, si l’EPR, dans un monde post-Fukushima, pourrait devenir la norme en terme de sécurité, d’aucuns jugent prématuré le passage à la génération III de réacteurs. Leur argument : en attendant la génération IV, il serait tout à fait possible de poursuivre l’exploitation de réacteurs de deuxième génération, dont les plus récents sont considérés par d’aucuns comme des réacteurs de la génération III.
Actuellement, deux EPR sont en cours de construction en Chine, un autre en Finlande et un dernier en France, sur le site de la centrale de Flamanville. Son coût, de 6 milliards d’euros, a doublé par rapport aux prévisions initiales. La mise en service de l’EPR de Flamanville est prévue pour 2016.