Accueil du site > La recherche en physique > Actualités scientifiques > Actualités 2012




Recherchez sur ce site


Des atomes froids pour comprendre la dynamique des électrons du graphène.

23 mai 2012

LPS - UMR 8502 , graphène

Lorsque l’onde quantique associée à un électron se propage dans un cristal, des effets d’interférence multiple modifient la dynamique de l’électron. En général, tout se passe comme si la masse de l’électron dans le cristal avait une valeur différente de sa masse dans le vide. Mais dans certaines situations, notamment pour les feuilles de graphène, apparaît un phénomène tout à fait particulier : quelle que soit leur énergie, les électrons se déplacent toujours à la même vitesse, comme si leur masse était nulle. Des physiciens du Laboratoire de Physique des solides viennent d’expliquer théoriquement comment se produit la transition entre cette situation et le comportement « normal » lorsque l’on change les caractéristiques du réseau cristallin. Ce travail publié dans la revue Physical Review Letters permet de caractériser ce phénomène et produit des résultats en excellent accord avec une expérience réalisée récemment à l’ETH de Zurich simulant cette transition avec des atomes froids placés dans un réseau optique.

GIF - 2.3 ko
Télécharger le PDF

Pour étudier les propriétés d’un électron dans un cristal, les physiciens déterminent la relation entre la quantité de mouvement de cet électron et son énergie cinétique. En général, cette énergie cinétique est proportionnelle au carré de la quantité de mouvement, mais le coefficient de proportionnalité (l’inverse de la masse) est différent de sa valeur dans le vide. Les physiciens résument cette propriété en disant que dans un cristal, l’électron a une masse effective différente de sa masse dans le vide. Dans certaines conditions, notamment pour le graphène, il peut apparaître une singularité topologique appelée « cône de Dirac » qui a pour conséquence que l’énergie cinétique de l’électron est alors simplement proportionnelle à sa quantité de mouvement. Cela signifie que l’électron a toujours la même vitesse, quelque soit son énergie. Le parallèle avec les photons, qui se propagent toujours à la même vitesse et dont l’énergie est proportionnelle à la quantité de mouvement, conduit à dire que les électrons ont alors une « masse effective nulle ». Si l’existence de ce phénomène était bien connue en matière condensée, la rigidité des réseaux cristallins ne permet pas de les déformer suffisamment pour observer la transition entre électron « normal » et électron de « masse effective nulle ». Pour mettre cette transition en évidence, il est en revanche possible d’utiliser un gaz d’atomes ultra-froids se déplaçant dans un paysage à deux dimensions modelé par des faisceaux lasers pour créer une sorte de « graphène artificiel ». Les atomes jouent alors le rôle des électrons et les faisceaux lasers ceux du réseau cristallin du graphène. La géométrie de ce dernier est modifiable continument en changeant l’intensité relative des lasers qui le constituent. C’est en accélérant les atomes et en mesurant des probabilités de transfert entre états quantiques qu’il est possible de détecter la transition entre un comportement correspondant à des particules quantiques de masse effective nulle et un comportement de particules de masse effective non nulle. Les théoriciens du LPS ont donné une explication complète de ce phénomène, grâce au modèle mis au point dans le même groupe il y a quelques années. Ils ont calculé les probabilités mesurées dans l’expérience en fonction de la direction de l’accélération, et ont ainsi confirmé le scénario proposé. Ce travail permet maintenant d’envisager l’étude de particules hybrides pour lesquelles la masse effective s’annule dans une seule direction, un phénomène se produisant juste au passage de la transition.

GIF - 56.1 ko
Représentation graphique des résultats théoriques, par l’équipe du LPS.
a) Dans le réseau optique non déformé, le spectre est celui d’une particule de masse effective nulle avec deux « cônes de Dirac » : l’énergie varie linéairement avec la quantité de mouvement. c) Dans le réseau optique très déformé, l’énergie varie comme le carré de la quantité de mouvement, c’est-à-dire comme une particule massive. b) Entre ces deux régimes, il y a une masse effective nulle dans une direction mais pas dans l’autre. Les résultats expérimentaux pour la probabilité de transfert sont présentés sous les trois spectres correspondants. La partie centrale représente la proportion d’atomes non transférée et les satellites la proportion transférée.

En savoir plus

Bloch-Zener oscillations across a merging transition of Dirac points, Lih-King Lim, Jean-Noël Fuchs et Gilles Montambaux, Physical Review Letters 108, 175303 (2012)

Références :

  • Merging of Dirac points in a two-dimensional crystal, G. Montambaux, F. Piéchon, J.-N. Fuchs et M.O. Goerbig, Phys. Rev. B 80, 153412 (2009).
  • Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice, L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu and T. Esslinger, Nature 483, 302 (2012)

Contact chercheur

Jean-Noël Fuchs, enseignant-chercheur

Informations complémentaires

Laboratoire de Physique des Solides, UMR 8502

Contacts INP

Jean-Michel Courty,
Catherine Dematteis,
Karine Penalba,
inp-communication cnrs-dir.fr