Les agrégats de méningocoques coulent dans les vaisseaux sanguins comme un liquide visqueux

Résultats scientifiques Génétique, génomique

Une collaboration entre biologistes et physiciens a permis de décrypter une étape clé de l’infection causée par le méningocoque, un pathogène humain responsable de méningites chez les nourrissons et les jeunes adultes, pathologies qui, malgré une prise en charge rapide, présentent un taux de mortalité qui reste très important. Ce travail a été publié le 17 mai 2018, dans la revue Cell.

L’infection humaine se caractérise par l’accumulation de bactéries à l’intérieur des vaisseaux sanguins qui se trouvent entièrement remplis de bactéries bien que, ni les mécanismes de formation, ni l’impact de ce processus ne soient connus. Intrigués par la formation de ces agrégats intravasculaire, le consortium de scientifiques, regroupant biologistes et physiciens, s’est attelé à comprendre cette étape de l’infection, tout particulièrement sa base physique.

Il ressort de cette étude que les agrégats bactériens formés par le méningocoque se comportent de façon inattendue, comme un liquide visqueux, avec la viscosité du miel. Les bactéries se multiplient rapidement dans les vaisseaux sous forme d’agrégats qui s’adaptent ainsi progressivement à la géométrie complexe du réseau vasculaire, comme un liquide qui s’écoule. L’étude montre que la formation de ces agrégats et leurs propriétés physiques sont essentielles pour la progression de l’infection.

Les propriétés de liquide visqueux des agrégats dépendent d’un facteur de virulence appelé pilus de type IV. Il s’agit de long filaments adhésifs et dynamiques qui s’allongent et se rétractent en permanence à la surface de la bactérie. Ces filaments permettent aux bactéries de se trouver, de se rapprocher et d’entrer en contact de façon réversible. L’agrégation est donc basée sur un processus aléatoire d’attraction entre les bactéries. Ces filaments permettent aux bactéries de se trouver, de se rapprocher et d’entrer en contact de façon réversible. L’observation montre que cette dynamique d’interaction entre bactéries voisines est aléatoire, et contribue donc de manière active à l’agitation globale des bactéries dans l’agrégat. Sur le plan physique ce processus d’interaction confère à ces agrégats des propriétés originales de fluide hors d’équilibre jusque-là non décrites. Par exemple, les bactéries à l’intérieur des agrégats présentent une motilité plus élevée que celle observée par la diffusion des bactéries isolées. Ainsi, au-delà de proposer une meilleure compréhension d’une infection humaine létale, cette étude dévoile un nouveau type de matière active basée sur la présence des forces attractives intermittentes entre ses éléments constituants.

Cette étude pluridisciplinaire a pu être réalisée grâce à une étroite collaboration entre un laboratoire spécialisé dans les infections causées par le méningocoque (G. Duménil, Institut Pasteur et INSERM) et des physiciens. La collaboration avec les équipes de Hugues Chaté (CEA, CNRS, Université Paris-Saclay), Nelly Henry (CNRS, Sorbonne Université) et Raphael Voituriez (CNRS, Sorbonne Université) a permis de coupler une approche expérimentale quantitative avec un modèle physique de matière active.

Image retirée.
Figure : Vue d’artiste d’un agrégat de bactéries Neisseria meningitidis aspiré par une micropipette. Sous application d’une pression négative, ce matériau présente des propriétés uniques de fluide visqueux, dues à des forces d’interactions intermittentes entre bactéries engendrées par des pili de type IV (représentés par des filaments colorés). La fluidité des agrégats est essentielle pour une colonisation efficace du réseau vasculaire.
© Julien Husson https://cellmechanics.jimdo.com

 

En savoir plus

Intermittent Pili-Mediated Forces Fluidize Neisseria meningitidis Aggregates Promoting Vascular Colonization.
Bonazzi D, Lo Schiavo V, Machata S, Djafer-Cherif I, Nivoit P, Manriquez V, Tanimoto H, Husson J, Henry N, Chaté H, Voituriez R, Duménil G.
Cell. 2018 Jun 28;174(1):143-155.e16. doi: 10.1016/j.cell.2018.04.010. Epub 2018 May 17.

Contact

Raphaël Voituriez
Chercheur CNRS au Laboratoire Jean Perrin (CNRS/Sorbonne Université)