CNRS : Centre National de la Recherche Scientifique
Liens utiles CNRSLe CNRSAnnuairesMots-Clefs du CNRSAutres sites
Programmes interdisciplinaires
  Accueil CNRS > Programmes terminés > Neuroinformatique et neurosciences computationnelles
| INC | INEE | INP | IN2P3 | INSB | INSHS | INSMI | INS2I | INSIS | INSU |

Neuroinformatique et neurosciences computationnelles

Directeur scientifique : Patrick Netter, directeur de l'Institut des sciences biologiques
Directeur du programme : Alain Destexhe
Contact Mission pour l'interdisciplinarité : Laurence El Khouri

 

 

Présentation du programme

Contexte

Comprendre le cerveau reste encore à l’heure actuelle un défi majeur pour les scientifiques de toutes disciplines. Le cerveau représente la structure la plus complexe jamais construite par la nature: cent milliards (1011) de neurones connectés par un réseau d'une complexité inimaginable (1014 à 1015 connections), et qui est capable de traiter des informations très complexes en un temps record, comme l'analyse instantanée d'une scène visuelle. Ce traitement d'information se fait au travers de la mise en action simultanée de groupes de neurones qui forment des patrons d'activité spécifiques. La grande complexité du cerveau lui permet non seulement de traiter des informations complexes, mais aussi elle rend le cerveau d'autant plus vulnérable à divers dysfonctionnements, qui résultent en pathologies telles que la schizophrénie, l'épilepsie, les troubles de la mémoire, du language, etc.

La compréhension des mécanismes cérébraux dépasse donc largement la recherche fondamentale: elle possède des implications directes dans la compréhension et le traitement de pathologies. Elle possède aussi des implications directes au niveau technologique, dans la construction de machines capables de traiter l'information de façon « intelligente », tel que le traitement d'informations du monde réel, scènes visuelles, auditives, etc.

Les neurosciences computationnelles représentent une discipline relativement récente et dynamique, et dont le but affiché est de comprendre le cerveau par des moyens théoriques et informatiques. Cette discipline combine l'expérimentation avec la théorie et les simulations numériques, ce qui permet d'ouvrir toute une série de possibilités nouvelles au niveau scientifique et d'applications technologiques. La neuroinformatique concerne plus spécifiquement les aspects informatiques, tels que la conception et la réalision de méthodes d’analyse mathématiques, la constitution de bases de données en neurosciences et les outils qui s’y rapportent. Les neurosciences computationnelles et la neuroinformatique combinent donc des spécialistes d'horizons différents, tels que les biologistes, physiciens, mathématiciens, informaticiens, ingénieurs, et médecins. Ces spécialistes identifient les principes du fonctionnement cérébral, et ils formalisent ces principes sous forme de modèles théoriques qui sont ensuite testés par la simulation numérique. Ces modèles peuvent également être implémentés directement sur des circuits électroniques, dans le but de créer de nouvelles générations de calculateurs. Ils peuvent aussi être utilisés comme outil pour investiguer les dysfonctionnements du cerveau, en particulier dans le cas où les pathologies résultent d’interactions multiples.

haut de page

Mais plutôt que de représenter des domaines séparés, les neurosciences théoriques et expérimentales fonctionnent souvent ensemble, de façon synergique. Aux USA et en Europe, il existe de nombreux centres où les laboratoires expérimentaux et théoriques se côtoient, comme les centres Bernstein allemands ou Gatsby anglais, le Brain & Mind Institute et l’Institute for Neuroinformatics en Suisse, le RIKEN Institute au Japon, et les nombreux centres américains (Keck, Sloan, Swartz centers, etc) [Pour une liste des centres de neurosciences computationnelles, et leurs coordonnées sur Internet, voir : http://home.earthlink.net/~perlewitz/centers.html]. La France est plus timide à ce niveau, avec plusieurs unités INSERM ou CNRS qui combinent les expertises théoriques et expérimentales, mais aucun institut ou centre plus ambitieux n’a encore pu voir le jour (cfr. Faugeras, Samuelides & Frégnac, A future for systems and computational neuroscience in France ? J. Physiol. Paris 101 : 1-3, 2007).

À l’image de cette interaction théorie/expérience, de nombreux projets Européens ont vu le jour, et certains de ces projets ont une renommée internationale. Il faut noter l’existence de programmes spécifiquement inter-disciplinaires, comme le programme Future and Emerging Technologies (FET) de la Communauté Européenne, et qui vise à subventionner des projets pluri-disciplinaires, ambitieux et innovants. De nombreux projets de neurosciences, alliant la théorie et l’expérimentation, avec des nouvelles technologies, ont été subventionnés par ce programme. En particulier, des projets récents tels que FACETS, DAISY et SECO consistent à allier l’expérimentation biologique, pour caractériser les neurones et les circuits neuronaux, avec des approches théoriques pour formaliser ces principes biologiques, et ensuite l’ingénierie pour implémenter ces modèles sur des circuits intégrés. Il en résultera de nouvelles générations de circuits intégrés qui fonctionneront de façon analogue aux circuits neuronaux réels. Ces circuits pourront être utilisés pour tester des principes biologiques, et aider à l’exploration des propriétés des circuits neuronaux, suggérer de nouvelles expériences, etc, la boucle est bouclée. Une des réalisation de ces projets a été la conception de circuits intégrés contenant un grand nombre de neurones de type intègre-et-tire, qui permettront la simulation (analogique) de réseaux de centaines de milliers de neurones, avec une vitesse de calcul de 100,000 fois plus rapide que le temps réel, une performance qui dépasse celle des plus gros calculateurs parallèles !

Même si des groupes Français occupent une place importante dans des projets tels que FACETS et DAISY, il faut déplorer l’absence de programmes ambitieux à l’échelle nationale. Plusieurs actions ont vu le jour (ACI neurosciences computationnelles, programmes CTI et neuroinformatique, par exemple), et elles ont mené à des projets intéressants, mais leur budget limité n’a pas permis de vraiment structurer la communauté théorique et computationnelle en neurosciences. Réaliser une telle structuration, et la stabiliser, nécessiterait de mettre sur pied un réseau d’excellence avec un budget important et des postes pour les nombreux jeunes chercheurs du domaine. Par exemple, l’inititative récente des Bernstein Centers en Allemagne a permis de structurer le domaine de façon très significative en créant plusieurs centres, et de nombreux postes de chercheurs. Aucune initiative de cette envergure n'a encore pu voir le jour en France.

haut de page

Objectifs et plus-value attendue

L'objectif du programme Neuro-IC est double :

  • de soutenir des actions fortement interdisciplinaires comme exposé ci-dessous. Le but de ce soutien est de jouer un rôle de tremplin vers la réalisation et l'élaboration de projets ambitieux qui combinent différentes disciplines, comme la biologie, la physique, l'ingénierie et l'informatique;
  • d'identifier différentes équipes fortes dans le domaine et qui formeraient le noyau d'un éventuel futur réseau d'excellence dans le domaine des neurosciences computationnelles et de la neuroinformatique.

 

Descriptif du programme

Le programme Neuro-IC soutiendra des projets de recherche fondamentale et de recherche appliquée sur des problématiques liées aux Neurosciences, abordées de manière interdisciplinaire avec la participation significative de chercheurs de disciplines telles que les Mathématiques, la Physique, l’Informatique, la Robotique ou le Traitement du signal. Une attention particulière sera donnée aux projets à l'interface neurosciences/sciences humaines. Le but du programme est en particulier de soutenir des actions interdisciplinaires qui constituent des projets aux idées radicalement nouvelles, de préférence entre partenaires qui n’ont jamais collaboré, et/ou jamais contribué à ce champ de recherche. Les projets qui comportent un facteur de risque substantiel sont particulièrement encouragés. Typiquement, le programme soutiendra des actions à caractère exploratoire et dont le niveau de risque (et l’absence de données préliminaires) interdisent l’écriture d’un projet de type ANR ou européen. Le programme servira donc de tremplin vers l’élaboration de projets plus ambitieux – cet aspect fondateur sera particulièrement important dans l’évaluation des projets.

Il n’y a pas de restriction thématique pour autant que les projets allient clairement les neurosciences avec au moins une autre discipline, dans le cadre d'un projet de nature théorique, numérique ou d’ingénierie. A titre d'exemples de thèmes, on peut mentionner l’étude de la relation structure-fonction dans les réseaux neuronaux (lien entre connectivité et comportement), l’étude de la dynamique d’émergence d’états pathologiques, l’étude du codage neuronal, de l’attention ou de la cognition, ainsi que la conception de nouveaux types de calculateurs inspirés de l’architecture du cerveau, des projets de robotique bio-inspirée, ou encore des projets alliant expérimentation et modélisation sur des thèmes issus des sciences humaines et sociales. Le programme soutiendra les thèmes traditionnels de la neuroinformatique, tels que la constitution de bases de données en neuroscience, ou la conception de nouvelles méthodes d’analyse de données. L’aide à la conception et/ou l’étude de faisabilité de nouvelles techniques expérimentales en neuroscience (par exemple nouvelles techniques d’imagerie) sera également soutenue, pour autant que ce type d’étude soit exploratoire et fondateur. Enfin, l'application de nouvelles méthodes de la physique théorique aux neurosciences est encouragée.

Les budgets demandés seront typiquement du fonctionnement, de l’équipement et des missions, de l’ordre de 30,000 Eur. Le programme ne pourra pas financer de salaire. Il est important qu’il y ait une adéquation entre le projet demandé et le budget (les « recyclages » de projets antérieurs ne seront pas évalués). L'usage envisagé de la somme demandée doit faire l'objet d'un budget détaillé et clairement motivé (une page maximum).

Les demandes devront faire l'objet d'une présentation scientifique courte, 5 pages maximum (sans annexe, références incluses), complétée d'un CV bref des partenaires principaux (une page maximum). Les aspects exploratoires et interdisciplinaires doivent être explicités (ils constituent les critères principaux d’acceptation, en plus de l’excellence scientifique du projet). Chaque projet sera examiné par 2 ou 3 rapporteurs de disciplines différentes.

L’appel à projet sera publié début janvier, avec une date limite de soumission début février. Ceci permettra de financer les projets retenus en mars de l’année d’acceptation. Les subventions accordées, utilisables pour toute dépense à l'exception de salaires ou vacations, seront à dépenser avant le 31 décembre de la même année.

À l’issue du projet, il sera demandé aux auteurs de rédiger un rapport court (de l'ordre de 5 pages) sur les résultats obtenus au cours du projet et les développements qu’il a contribué à réaliser (publications, soumission de projet ANR ou Européen, démarrage d’autres projets plus ambitieux, etc).

haut de page

Enjeu scientifique interdisciplinaire

Le rôle majeur de ce programme est de favoriser, par le rapprochement Neurosciences-Neuroinformatique, une meilleure dynamique dans l’approche de la complexité du système nerveux. Déjà opérationnelle dans quelques grands centres (Bernstein, Gatsby, Brain & Mind Institute, Institute for Neuroinformatics, RIKEN Institute, Keck, Sloan, Swartz centers, etc), cette approche contribue au développement de la recherche fondamentale mais aussi, dans des pathologies chroniques, graves et fréquentes (maladies neurodégénératives, paraplégie, douleur, maladies mentales) à la définition de nouvelles stratégies thérapeutiques (prothèse, robot, nanotechnologie et neurostimulation, réalité virtuelle et troubles de la représentation du corps dans l’autisme…). Cette approche est également indispensable dans la conception de nouvelles architectures de calcul, inspirées du cerveau.

Le programme Neuroinformatique et Neurosciences Computationnelles peut aussi être vu comme une étape préliminaire et nécessaire à un plan d’action structurant plus ambitieux à venir, et dont la mise en place dépendra de l’ambition scientifique des institutions concernées).

 

Archives des AO

haut de page

Barre d'outils Imprimer Accueil Contact Crédits