CNRS : Centre National de la Recherche Scientifique
Liens utiles CNRSLe CNRSAnnuairesMots-Clefs du CNRSAutres sites
Accueil Sciences du vivant - Centre National de la recherche scientifiqueAccueil Sciences du vivant - Centre National de la recherche scientifique
Accueil > La recherche en sciences du vivant > Parutions > Lorsque la moelle se passe du cerveau pour commander nos artères

sur ce site :

Parutions

 

Lorsque la moelle se passe du cerveau pour commander nos artères

 

Comment le système nerveux moteur mobilise-t-il le système nerveux autonome pour que l’oxygénation des muscles soit adaptée à la demande physiologique? Alors que l’on pensait que l’interface entre système nerveux somatique et autonome était située dans le tronc cérébral, les chercheurs montrent que la moelle épinière est le siège d’un mécanisme de couplage entre activités somatiques et autonomes. L’activation de neurones cholinergiques intraspinaux, en produisant un rythme lent commun aux deux types de neurones, serait responsable de cette mise en cohérence.

 

Afin de faire face à l’augmentation des besoins physiologiques lors d’une activité physique telle que la locomotion, le système nerveux somatique (en charge des mouvements volontaires via le contrôle des muscles striés) et le système nerveux autonome (qui contrôle la vascularisation, la digestion, le muscle cardiaque, la sudation…) doivent coordonner leurs actions. Alors que l’on pensait que l’interface entre système nerveux somatique et autonome se situait dans le tronc cérébral, ce travail montre que la moelle épinière est le siège d’un mécanisme de couplage entre activités somatiques et autonomes. Pour aborder cette question, les chercheurs ont utilisé une préparation in vitro de moelle épinière isolée de rat nouveau-né, dans laquelle il est possible d’enregistrer simultanément l’activité des systèmes nerveux somatique et autonome. Ils ont montré que l’acétylcholine, un neurotransmetteur abondant dans la moelle épinière pourrait jouer un rôle clé dans ce couplage entre activités locomotrices et sympathiques.

Dans la moelle épinière sont localisés les réseaux neuronaux capables de générer l’activité locomotrice; ces réseaux coordonnent ainsi l’activité des motoneurones qui vont faire se contracter les muscles. à côté de ce système somatique, sont situés les neurones de sortie du système nerveux sympathique (appelés neurones sympathiques intermédiolatéraux ou IMLs) qui, entre autres organes cibles, connectent les fibres lisses des artères.

Grâce à un cocktail particulier de neurotransmetteurs, on peut activer les réseaux locomoteurs et enregistrer dans la moelle épinière isolée une activité de locomotion. Dans ces expériences, seuls les motoneurones innervant les muscles des pattes et du dos sont activés rythmiquement en phase avec l’activité locomotrice.

Lorsque l’on administre sur la moelle épinière isolée, un agoniste (une substance qui mime l’effet d’un neurotransmetteur) d’une sous-classe de récepteurs à l’acétylcholine (les récepteurs muscariniques), on observe l’apparition d’un rythme lent que l’on enregistre non plus exclusivement au niveau des motoneurones mais aussi dans les neurones sympathiques. Cette activité est similaire aux variations lentes de pression artérielle que l’on observe spontanément chez l’homme et l’animal. Enfin, lorsque l’activité locomotrice et l’activité lente induite par l’acétylcholine sont simultanément déclenchées on observe une fusion des deux activités couplant ainsi l’activité des systèmes nerveux somatique et autonome et contribuant à la régulation de la pression artérielle lors d’un exercice.

 

Figure : Au cours de l'activation de récepteurs cholinergiques muscariniques (mAchT) dans la moelle épinière thoracique, on enregistre une commande synaptique lente reçue simultanément par les neurones du système nerveux sympathique situés dans la colonne intermediolateral (IML) et par les motoneurons somatiques (MNs). Cette commande somato-sympathique pourrait être la base des variations de pression artérielle (en mm de mercure, Hg) observées chez l’homme et l’animal et appelées vagues de Mayer.

© Jean-René Cazalets & Sandrine Bertrand

 

En savoir plus

Contact chercheur

 

  • Sandrine Bertrand

     

    UMR 5287 (CNRS/Université de Bordeaux)
    Zone nord Bat 2 2ème étage
    146, rue Léo Saignat
    33076 Bordeaux cedex

 

Mise en ligne le 17 juillet 2018

Accueil du Sitecontactimprimer Plan du sitecredits