The only French organisation for multidisciplinary research, the CNRS is a key player in international research, as well as a recognised innovator. Excellence, freedom of research, interdisciplinarity, and knowledge transfer are just some of the organisation’s values in the service of research that is in touch with economic and social issues.

Pushing back the frontiers of knowledge

The CNRS chooses to pursue research excellence that explores natural and social phenomena in greater depth, in an effort to push back the frontiers of knowledge. Based on researchers’ inquisitiveness, this science — which is constantly evolving — is a source of progress for humanity.

Multidisciplinary research

From basic research…

“Frontier research”, or so called basic research, is at the heart of the CNRS’s mission. It pushes back the limits of knowledge and expands our understanding of natural and social phenomena. Ranging from atoms, cells, and cognition to Roman law and gender stereotypes, all fields of knowledge come under the scrutiny of the scientific method, which tests theories through experimentation and argumentation.

…to its applications

The CNRS successfully applies for many patents, and establishes scientific partnerships with industrial actors in order to explore possible applications for its discoveries, and to develop technologies. The transfer of its basic research results drives innovation based on a scientific foundation of the highest quality.

Budding researchers: the Momentum call for proposals

Vue interne du plongement isométrique d'un tore carré plat, en 3D, dans l'espace ambiant.
© Vincent Borrelli / Saïd Jabrane / Francis Lazarus / Boris Thibert / Damien Rohmer / CNRS Photo library

Giving young researchers the means to autonomously explore emerging subjects is the goal of the CNRS-Momentum call for proposals launched in 2017. Open to all scientific domains, it finances projects connected to 13 transdisciplinary subjects, such as modelling the living, artificial intelligence, the study of human behaviour, etc.

Learn more about Momentum (in French)

A wealth of discoveries

Find out more about ten striking sets of scientific results from the past three years, selected by the CNRS Institutes. Energy storage, the origins of life, the secrets of the atom...These cutting-edge discoveries in basic research most often relate to highly topical issues.

Interdisciplinarity stimulates new approaches

Interdisciplinarity advances science by bringing disciplines together. This encounter can occur between established domains, but also between seemingly remote fields (physics and philosophy, for instance). New concepts, methods, and innovative solutions have resulted from interdisciplinary cooperation, which would not have been possible if scientists had remained confined to their respective domains.

Mission for Interdisciplinarity

The CNRS has made interdisciplinarity one of the priorities of its scientific policy. Numerous examples have shown that breakthrough discoveries are made at the interface between disciplines, thanks to researchers from different backgrounds. The Mission for Interdisciplinarity (MI) provides tools and dedicated funding to support novel projects led by interdisciplinary communities.

Learn more about MITI (in French)


Interdisciplinary “challenges”

The “challenge” is a support tool that offers particular incentives. Like an incubator, it can structure research communities within a few years, sometimes from disciplines that are quite remote. The CNRS has positioned itself through this approach as a key player in the national and international debate on future challenges such as mass data, energy transition, or knowledge of the living.

A global policy for big data

Supercomputing, “cloud,” the use and technology transfer of mass data now concern all scientific disciplines. These subjects, which link the most basic research with the most applied, represent a strategic multidisciplinary challenge for generating new knowledge. In 2015, the CNRS created the Computing-Data Mission (Mi-Ca-Do) to define and implement a global policy jointly shared with its national and international partners.

Super calculateur
The CURIE supercomputer can complete up to 2 million trillion operations per second.© Cyril Frésillon / CNRS Photo library

Large-scale instruments at the forefront of research

The CNRS designs and implements Very Large-Scale Research Facilities (TGIR) and Research Infrastructure (IR) with its French, European, and international partners, for the benefit of the entire scientific community. As a result, international teams working at the forefront of research in all fields have access to high-performance facilities: telescopes, high-energy particle accelerators, neutron sources, synchrotron radiation sources, lasers and intense magnetic fields, supercomputing systems, etc.

The Virgo interferometer in Cascina near Pisa, Italy, detected distortions in space generated by the passing of gravitational waves.
The Virgo interferometer in Cascina near Pisa, Italy, detected distortions in space generated by the passing of gravitational waves.© Cyril Fresillon / Virgo / CNRS Photo library

The CNRS Institutes

Within the CNRS Research Office (DGDS), the CNRS Institutes are the structures that implement the institution’s scientific policy, and oversee as well as coordinate the activities of laboratories.

The ten CNRS Institutes cover more or less extensive scientific fields, share projects, and promote cooperation between disciplines. They are directed by specialists in their domains who come from either the CNRS or the universities. The Institutes collaborate closely with functional departments on the following issues:

  • international policy,
  • site policy,
  • technology transfer and innovation,
  • scientific and technical information.

Institute of Chemistry (INC)

The INC’s mission is to develop and coordinate research involving the development of new compounds, the understanding of chemical reactivity and prediction of the relations between the structure of molecules at the atomic level and the properties of these molecules.

Research areas

  • Chemistry of and for the living (exploration and development of new models and tools for pharmacology, biotechnology, medicine, cosmetics, the agri-food and agrochemical industries)
  • Green chemistry and sustainable development (creating new and cheaper chemical reactions that are also more effective, selective, and secure)
  • Functionalisation of matter (design and monitoring of material properties, especially for energy, and the development of nanochemistry)

INC website

Institute of Ecology and Environment (INEE)

The INEE’s mission is to develop and coordinate research in the fields of ecology and the environment, including biodiversity and human-environment interactions.

Research areas

  • Ecology
  • Biodiversity
  • Impact of global change
  • Health-environment
  • Resources
  • Chemical ecology and environmental chemistry

INEE website

Institute of Physics (INP)

The INP’s mission is to develop and coordinate research in physics, with two primary objectives: to understand the world and to respond to the challenges facing society today. The INP laboratories are centered around two main fields:

  • Fundamental laws, optics and lasers
  • Condensed matter physics and nanoscience

INP website

Institute of Biological Sciences (INSB)

The INSB’s mission is to develop and coordinate research in biology that seeks to understand the complexity of the living, from atoms to biomolecules, and from the cell up to complete organisms and populations.

Research areas

  • Structural biology
  • Bioinformatics
  • Pharmacology
  • Neuroscience
  • Cognitive science
  • Immunology
  • Genetics
  • Cellular biology
  • Microbiology
  • Physiology
  • Plant biology
  • Systems biology
  • Biodiversity

INSB website



Institute for Humanities and Social Sciences (INSHS)

The INSHS’s mission is to develop research on human beings, both as producers of language and knowledge, and as economic, social, and political actors.

Research areas

  • Cultures and societies in history
  • Human beings, societies, and the environment
  • Behaviour, cognition, and communication
  • Contemporary worlds

INSHS website

Institute for Engineering and Systems Sciences (INSIS)

The mission of the INSIS is to ensure the continuum between basic research, engineering, and technology by promoting a “systems” approach through the development of the disciplines central to the Institute.

Research areas

  • Sciences and technologies related to automation, signals, and electronic and photonic systems
  • Sciences and technologies covering mechanics, energy, and processes

INSIS website

National Institute for Mathematical Sciences and their Interactions (INSMI)

The INSMI’s mission is to develop and coordinate research in different branches of mathematics, ranging from its basic aspects to its applications. It also helps structure the French mathematical community and integrate it into the international scientific landscape.

Research areas

  • The different domains of mathematics
  • Mathematical modeling and simulation
  • Interface with other scientific disciplines
  • Interactions with companies and society

INSMI website

National Institute for Earth Sciences and Astronomy (INSU)

The INSU’s mission is to create, develop, and coordinate national and international research in astronomy and Earth sciences, as well as ocean, atmospheric, and space sciences.

Research areas

  • Oceanography
  • Geology
  • Geophysics
  • Climatology
  • Hydrology
  • Volcanology
  • Seismology
  • Environment
  • Planetary science
  • Astronomy
  • Astrophysics

INSU website

Institute for Information Sciences and Technologies (INS2I)

With the dual objective of both conducting and supporting research, the Institute organises and develops projects in computer science and digital technology. One of its primary goals is to make these two research areas a central part of multi- and interdisciplinary issues, along with information science, in particular through its partnership with the INSIS and the CNRS’s interdisciplinary tools.

INS2I website

National Institute of Nuclear and Particle Physics (IN2P3)

The IN2P3’s mission is to develop and coordinate research in the field of nuclear physics, particle physics, and astroparticles.

Research areas

  • Particle physics
  • Quark-gluon plasma and hadronic physics
  • Nuclear physics and astrophysics
  • Astroparticle physics
  • Neutrino physics and astrophysics
  • Research and development of accelerators
  • Computing grids and data science
  • Nuclear applications for the health, energy, and environment sectors

IN2P3 website

Establishing partnerships

The CNRS plays an essential unifying role in the effective functioning and influence of French research by virtue of its partnerships with academia, industry and regional authorities. This partnership-based approach structures the organisation’s science, innovation, and education policy.

Multiple forms of cooperation

Academic partnerships

Since the creation of associated laboratories in 1966, partnerships and diversity have been the rule for CNRS research structures. The organisation’s 1,100 laboratories have all signed agreements and conventions with partners. In addition, 90% of its laboratories are joint research units (UMR), which bring together personnel from the CNRS and one or more other institutions (university, school, other organisation, etc.) to work on jointly defined subjects. 

Industrial partnerships

Industrial actors are essential partners of the CNRS, working alongside the academic world (higher education and public research). This cooperation, which is sometimes little known to the public, takes the form of joint research projects, patents, domestic and international public-private research organisations, and the creation of start-ups. These are so many concrete realisations that make the CNRS a key player in the French innovation landscape.


Strength concentrated at strategic sites

Centres of excellence

The CNRS is an essential contributor to the construction of world-class university sites that coordinate learning, research, and innovation. By promoting synergies and optimising resources, this site-based policy seeks to create champions of academic research in France who can compete with the world’s best multidisciplinary universities.

The Investments for the Future Programme

Present throughout France, the CNRS is well positioned to promote this programme. It is a full-fledged participant in the Investments for the future (PIA) scheme through its role in Idex (Initiatives of excellence) projects and I-sites (Science Innovation Territory Economy Initiatives). A founding member of 14 networks of universities and higher-eductation institutions (ComUEs), it is present in the administrative boards of numerous universities.

Site agreements

With its partners, the CNRS signs site agreements that define a shared scientific strategy, and provide a functional framework for joint research units (resources, contracts, etc.). The organisation helps structure sites by contributing its research excellence, scientific networks, industrial partnerships, international cooperation, and access to large research infrastructure.  

The actors of the CNRS site policy 

The CNRS Research Office (DGDS) coordinates the institution’s site policy through the directors of its ten Institutes.  

The Department for the Territorial Organisation of Research (Dapp) is in charge of assisting higher education institutions in their new responsibilities within the French research system. It coordinates the various operations through which the CNRS contributes to the development and promotion of large scientific clusters, working hand-in-hand with local actors and authorities.

The CNRS is a major player in the Paris-Saclay cluster that brings together research organisations, higher education institutions, and companies to make up a world-class scientific and technological centre.© DR

The CNRS’s 18 regional offices, each under the responsibility of a regional representative, serve as the primary point of contact for the organisation’s partners in the field. They provide laboratories with essential services in human resources, financial management, partnerships and technology transfer, information systems, hygiene, and security. This cooperation has intensified in recent years in response to a commitment to ensuring coherent management of joint research units in the higher education and research landscape.

CNRS regional offices

Research in the laboratory

CNRS laboratories are the organisation’s “building blocks”. Their teams, which consist of researchers, engineers and technicians, are behind the production and transmission of knowledge. Most laboratories are joint research units, bringing together partners from academia (universities, schools, and other research organisations) and industrial actors.

Highly diverse teams

Laboratories managed in partnership

The CNRS counts approximately 1,100 laboratories spread across France. The vast majority are joint research units (UMR) associated with a university, higher-education institution, or research organisation. They shape the local scientific landscape. In addition to these laboratories, there are 36 international joint units (UMI), whose number has been growing significantly since 2010.

Staff members with varied duties and status

Joint research units, which develop and disseminate knowledge, are characterised by the diversity of their team members’ status and duties. CNRS researchers, engineers and technicians work alongside academics, engineers and technicians from other institutions (universities, engineering schools, other research organisations). Their teams are complemented by contract employees (PhD students, postdoctoral fellows, researchers, engineers and technicians).

UMR, label of excellence

Obtaining the UMR status for a laboratory is a mark of recognition in the world of research, both in France and abroad. Reassessed every four years, this label makes it possible to hire CNRS personnel (researchers, engineers, technicians, administrative staff), and gives access to the organisation’s funds and international cooperation tools. 30% of French university laboratories are joint research units in partnership with the CNRS.

Professionals in the service of science


More than 15,000 researchers work in all scientific disciplines as represented by the organisation’s ten Institutes. They are recruited either by a competitive entry examination based on a scientific project, or by contract.

Researcher profiles:

  • 47.9 years: average age
  • 34.6% women
  • 90 different nationalities

Scientists drive research at the CNRS, which they have made the world’s leader in terms of scientific publications. The visibility of their work depends on their participation in conferences and seminars. Researchers also play an essential role in teaching and disseminating knowledge. They assist PhD students and young scientists, and can manage teams as well as teach. Encouraged to transfer their research results (through partnerships with industry, by applying for patents, creating companies, etc.), they are also key actors in relations between science and society through their participation in informational events intended for the general public. 

Engineers and technicians 

Nearly 18,000 engineers and technicians dedicate themselves to research and related support activities, or are involved in administrative duties (in laboratories, regional offices, or CNRS headquarters). Like researchers, engineers and technicians are recruited through competitive entry examination, or as contract employees.

Film produced by the CNRS. Animation: Nina Demortreux and Nicolas Mifsud. Music: “A Difficult Start” by Julien Vega, edited by Frederic Leibovitz

Training through research

Training for and through research is one of the missions of the CNRS. Each year, more than 500 young scientists begin a PhD at the CNRS. Recruited through a doctoral contract, PhD candidates are under the supervision of permanent researchers, and are fully integrated in laboratory teams. Approximately 1,700 PhD students of 80 different nationalities are preparing a thesis in a CNRS laboratory.

Assessing research

At the CNRS, the evaluation of public research is crucial, both for its actors, researchers, and for the public authorities that finance it, as well as for society, which has expectations and queries regarding scientific advances and their applications. This is an important issue in the context of international competition, public funding constraints, and societal evolution.

At the CNRS, assessment applies to the entire organisation, including its laboratories, researchers, engineers, and technicians. It relies on several criteria, such as scientific publications, awards, recognition from the scientific community, and technology transfer among others.

Evaluating the CNRS

In 2016, an international advisory committee evaluated all CNRS activities, following the institution’s completion of a self-evaluation covering both its scientific and research support activities. The advisory committee issued a report proposing analyses and recommendations for the main challenges facing the CNRS between now and 2025, pointing to its budget in particular.

Evaluating the laboratories

Joint research units are assessed every five years by an independent national governing body, the High Council for Evaluation of Research and Higher Education (Hcéres). Evaluations are completed by committees of experts from academia or the private sector, and their reports are made public. 

Hcéres website

Evaluating researchers

Researchers are evaluated and their careers monitored by the National Committee for Scientific Research (CoNRS), a collective governing body elected from among members of the scientific community. Each year, researchers present an activity report on the progress of their research, scientific publications, teaching and technology transfer activities.

Learn more about CoNRS

Assessment: Peer review

The assessment of scientific activity and research traditionally relies on the principles of “peer review”. Researchers use qualitative criteria to evaluate one another, for example within the reading committees of scientific journals. These bodies, which are made up of researchers, decide whether the papers that are submitted to them should be published.

As a part of its Open Science policy, the CNRS signed the DORA declaration on July 14, 2018: this is a commitment to avoid the use of bibliometrics and to rely on qualitative assessment, as well as to take into account the full variety of research activities.

In this context, the evaluation of researchers by the sections and interdisciplinary commissions is based on the following four principles:

  1. It is the results themselves that are evaluated, not the fact that they may have been published in a prestigious journal or other high profile media.
  2. The scope, impact and personal contribution made to the outputs submitted for evaluation prevail over their exhaustive listing.
  3. Assessment shall take all types of research output into account, and in particular, where it makes sense, the data underlying the publication and the source code necessary to produce the results.
  4. All the cited productions shall be available in HAL or possibly another open archive, insofar as their type allows it.

Sharing scientific information

Scientific and Technical Information, which gathers all research-derived information, is a valuable and necessary resource for researchers. A pioneer in the domain, the CNRS offers a complete range of services for higher education and research. At the same time, it is committed to developing open science that is accessible to the largest number of people.

The actors of scientific and technical information

The Scientific and Technical Information Department (DIST) implements the strategy on the production of scientific analyses, publications and data. It oversees the gathering, processing, archiving, and diffusion of documentary resources. It also provides laboratories with thematic and interdisciplinary portals for accessing these resources, as well as scientific monitoring tools. It takes part in the national debate on the transition to the digital age, and promotes knowledge sharing through open archives. The DIST leads a network of IST representatives in joint research units. It also publishes a wealth of material on scientific information news and strategy.

DIST publications (in French)

Bâtiment de l'Inist à Vandreuve-lès-Nancy
The Institute for Scientific and Technical Information (INIST), an intramural service unit of the CNRS in Vandœuvre-lès-Nancy (northeastern France), provides access to and promotes technology transfer for scientific production. Since 1989, it has been hea© DR

Essential services for research

Science is driven by science, and IST services are therefore essential to the activity of researchers, who need to access information on existing research in a particular field, analyse data, publish research results in scientific publications, and find applications for their work.

Global science at a click

The CNRS facilitates access to global scientific production through open archives and bibliographical databases. The organisation is the world’s second scientific producer, with more than 50,000 papers published each year (Scopus, Scimago, 2017).

Hal (Hyper articles online)
The objective of the multidisciplinary Hal open archive, which was created by the CNRS, is to share research results. It allows researchers to file research-level papers, whether published or not, in an open access database, as well as dissertations from French and foreign teaching and research institutions, or from public or private laboratories.

Découvrir Hal

CNRS researchers have access to the Scopus and Web of Science bibliographical databases, published by Elsevier and Thomson Scientific, respectively. They allow researchers to gain a better understanding of what is being published, and to plan for new collaborations. They are also used for bibliometric analyses, which quantify the publications of researchers.

Open science, or free access to knowledge

The potential of digital technology has opened the way for a new knowledge dissemination system. Open science has been a game-changer, promoting greater knowledge sharing for the benefit of researchers and society. This involves giving freer and wider access to public research data and results. This free access is not only free of charge; it also requires more transparency and discussions surrounding scientific work.

The CNRS is deeply committed to this process, and brings together numerous actors around this issue at the national level. It is therefore in keeping with the priorities of the European Union, which seeks to open up and pool knowledge on a large scale.

Digital law: the contribution of the CNRS

The “Law for a Digital Republic” of October 7, 2016 is the first legislative text co-written with Internet users. The contribution of the CNRS, which largely inspired the legislators, promoted breakthrough advances for researchers, entitling them to publish, after a shorter embargo period, any articles related to research that is funded mostly by public funds. In addition, the law enables public sector researchers to explore both scientific and non-scientific material without prior authorisation from right-holders, as well as the data associated with such material (Text and Data Mining).

Le CNRS, pilote de programmes et équipements prioritaires de recherche (PEPR)

Les programmes et équipements prioritaires de recherche (PEPR) visent à construire ou consolider un leadership français dans des domaines scientifiques liés à une transformation technologique, économique, sociétale, sanitaire ou environnementale et considérés comme prioritaires au niveau national ou européen.

Les PEPR, financés sur un montant cible de 3 Md€, existent sous deux formes : les PEPR de stratégie d’accélération nationale et les PEPR exploratoires. Ces programmes font partie du volet « dirigé » de France 2030, dit « Financement des investissement stratégiques ». Le CNRS est le pilote d’une majorité d’entre eux.

Les PEPR de stratégie d’accélération nationale

Les stratégies nationales d’accélération accompagnent des transformations déjà engagées avec des produits, services, usages et acteurs bien identifiés. Ces stratégies ont été élaborées par l'Etat pour accélérer ces transformations au plan national, de façon globale et coordonnée (en termes normatif, financier, fiscal, etc.).

C’est à la suite des travaux d’un collège d'experts, représentants des mondes industriel et scientifique, dont le PDG du CNRS, Antoine Petit, a fait partie, que le Conseil interministériel de l'innovation a identifié une quinzaine de marchés-clés dont le développement devait être accéléré et massivement financé, parmi lesquels: Santé, Agriculture et Alimentation, Numérique, Culture, Education, Mobilité, Développement durable.

Les stratégies d’investissement prioritaires répondent à des enjeux environnementaux, économiques, de souveraineté nationale ou d’indépendance technologique. Elles couvrent l’ensemble du cycle de vie d'une innovation, de l'émergence d'une idée dans un laboratoire de recherche ou une université jusqu'à la mise sur le marché, en passant par les formations universitaires nécessaires pour nourrir les scientifiques et entrepreneurs de demain, ou encore les indispensables projets collaboratifs entre laboratoires et entreprises.

Adossé a une stratégie nationale, le PEPR doit ainsi permettre la levée de barrières ou de verrous scientifiques liés à cette stratégie.

L'enveloppe globale prévue pour ces PEPR est de 2 Md€. Par lettre de mission, l’État fixe l'enveloppe budgétaire allouée au PEPR et désigne les institutions pilotes en charge de sa mise en oeuvre. Le programme est ensuite décliné concrètement dans un document de cadrage rédigé par le ou les pilotes. Au total une vingtaine de PEPR de stratégie d’accélération ont été identifiés, dont une douzaine pilotés ou co-pilotés par le CNRS.

Les PEPR exploratoires

Ces PEPR sont conçus pour des transformations émergentes, qui en sont donc à leurs débuts où leurs prémices. L’État décide ici d’accompagner et de soutenir l’exploration du potentiel de ce type de transformation au travers d'un PEPR exploratoire ; celui-ci doit ainsi permettre la conduite d’une politique scientifique sur des domaines d’intérêts national et européen, aux retombées pouvant être multiples.

L'enveloppe globale prévue pour ces PEPR est de 1 Md€. Les PEPR Exploratoires sont sélectionnés par appel à programmes, les propositions étant évaluées par un jury international. Sur la base de l'avis du jury, l’État désigne les programmes lauréats à financer. Le dossier scientifique de candidature à l’appel à programme deviendra alors le document de cadrage du PEPR. Ce dossier en précise les pilotes et le budget, celui ci pouvant faire l'objet d'arbitrage

Les programmes prioritaires de recherche, précurseurs des PEPR

Les programmes prioritaires de recherche sont les précurseurs des PEPR. Financés dans le cadre du programme investissements d’avenir (PIA3), l'action « Programmes prioritaires de recherche » visait à construire ou consolider des leaderships français de recherche.

Comment les PEPR sont-ils financés ?

Au sein de chaque programme, qu’il s’agisse d’un PEPR accélération ou exploratoire, la déclinaison opérationnelle se fait par projet :

  • Les projets ciblés, déjà matures lors du cadrage du PEPR, sont contratualisés entre un établissement coordinateur, responsable du projet, et l’ANR.
  • Les projets sélectionnés par appel ouvert à toute la communauté scientifique : l’ANR lance des appels à projets (AAP) ou des appels à manifestation d’intérêt (AMI) sur la thématique du programme.

Le CNRS pilote ou copilote de 7 PEPR d’accélération

Hydrogène décarboné, supercalculateur, quantique, ville durable, enseignement et numérique, recyclage
  • Le PEPR d’accélération Hydrogène décarboné couvre les problématiques de production, stockage, transport, utilisation pour la mobilité lourde de l’hydrogène décarboné et le déploiement des systèmes hydrogène à travers des analyses de cycle de vie, des études technico-socio-économiques et des aspects sécurité. 
  • Le PEPR d’accélération Cybersécurité a pour vocation de soutenir la recherche amont en cybersécurité en explorant de nouvelles voies pouvant conduire à des innovations de rupture, dans le but de soutenir et développer la filière française.
  • Le PEPR d’accélération Intelligence artificielle est synchronisé avec le Plan coordonné européen pour le développement et l’utilisation d’une intelligence artificielle « made in Europe », aux priorités communes, notamment pour le développement d’IA embarquée ou l’utilisation de l’IA pour accélérer la transition écologique.
  • Le PEPR d’accélération Technologies quantiques vise à permettre à la France et à l’Europe de disposer de ses propres solutions pour garantir leur indépendance dans ce domaine clé.
  • Le PEPR d’accélération Solutions pour la ville durable et innovations territoriales vise à refonder le développement urbain autour des quatre défis que sont la sobriété, la résilience, l’inclusion et la production urbaine
  • Le PEPR d’accélération Recyclabilité, recyclage et réincorporation des matériaux recyclés a pour objectif de de relever un certain nombre de défis écologiques, économiques et technologiques nécessaires à la transition vers une économie circulaire, compétitive et respectueuse de l’environnement.
  • Le PEPR d’accélération Enseignement et numérique doit permettre de dynamiser et de structurer le secteur numérique éducatif, en développant des marchés viables, en particulier avec le secteur public, et en soutenant des acteurs nationaux de grande taille. 

Pour en savoir plus

Le CNRS pilote ou co-pilote de 17 PEPR exploratoires

Carbone et écosystèmes, solution aqueuse, stockage sur ADN, lumière, matériaux et IA, robot
  • Le PEPR exploratoire « FairCarbon » s’intéresse au cycle du carbone, afin d’identifier des leviers – écologiques, agronomiques, socio-économiques – et scénarios de trajectoires pour atteindre la neutralité carbone et restaurer les ressources naturelles dans les écosystèmes continentaux. 
  • Le PEPR exploratoire « MoleculArXiv » est dédié au stockage de données massives sur ADN et polymères artificiels et vise à inventer de nouveaux dispositifs de stockage de données sur support moléculaire, à la fois ADN et polymères artificiels. 
  • Le PEPR exploratoire « OneWater » a vocation à mettre les recherches sur les ressources en eau au cœur de la transition durable des territoires.
  • Le PEPR exploratoire « Diademe » vise à accélérer la conception et l’arrivée sur le marché de matériaux plus performants et plus durables, notamment grâce à l’intelligence artificielle.
  • Le PEPR exploratoire O2R propose de mettre en œuvre une robotique socialement adaptée, dans ses principes, son comportement, ses performances et ses usages, et ouverte à la complexité des enjeux de la société.
  • Le PEPR exploratoire ATLASea propose de déchiffrer et d’exploiter le génome de chaque organisme, en se focalisant sur la Zone Économique Exclusive (ZEE) française, en métropole et sur quatre territoires ultramarins.
  • Le PEPR exploratoire Solu-Bio vise à favoriser le développement des solutions basées sur la nature (NbS) en tant que réponses transformatrices, basées sur le potentiel de la nature, face aux changements environnementaux.
  • Le PEPR exploratoire Spin vise à accompagner un nouveau cycle d’innovations prenant en compte la frugalité comme critère de performance essentiel, au même titre que la puissance de calcul, la rapidité, la miniaturisation et le coût.
  • Le PEPR exploratoire Irima a pour objectif de formaliser une « science du risque » pour contribuer à l’élaboration d’une nouvelle stratégie de gestion des risques et des catastrophes et de leur impact dans le contexte de changements globaux, anthropiques et climatiques.
  • Le PEPR exploratoire Origins se focalise sur la levée de verrous scientifiques suivant les cinq axes que sont la détection et caractérisation d’exoplanètes par imagerie directe, l’analyse d’échantillons spatiaux, avec ou sans risques biologiques, l’étude de la Terre dans sa globalité comme planète habitable, l’expérimentation de laboratoire en exobiologie et la bio-analyse d’échantillons de la Terre ou Mars anciens et la modélisation numérique et l’analyse de données.
  • Le PEPR exploratoire Luma vise à étudier, comprendre et développer la lumière comme moyen d’explorer et de contrôler les systèmes physico-chimiques et biologiques, aux interfaces entre la physique, la chimie, l’ingénierie et les sciences de la vie, de la santé et des sciences de l’environnement et du climat.
  • Le PEPR exploratoire Sous-sol a pour objectifs la définition des conditions d’utilisation responsable et durable du sous-sol en fonction des différents scénarios d’évolution économique, énergétique et technologique, en prenant en compte les trajectoires socio-techniques, la mise en place d’un cadre visant à limiter les conflits et les impacts, à définir les stratégies d’étude et de conservation des archives contenues dans le sous-sol, à créer les conditions d’un dialogue et d’arbitrage autour des activités liées au sous-sol et à soutenir les actions de protection-valorisation du sous-sol, considéré comme patrimoine commun et la structuration d’une large communauté de chercheurs en sciences de la Terre et de l’environnement, en sciences sociales, environnementales, économiques et juridiques et d’une communauté encore plus large impliquant, autour de ces enjeux, citoyens, décideurs et industriels.
  • Le PEPR exploratoire Propsy ambitionne d'apporter des solutions pour déployer une médecine de précision en psychiatrie.
  • Le PEPR exploratoire Traccs vise à transformer les méthodes de modélisation du climat en améliorant connaissances et outils concernant les impacts et les risques pour développer les services dans le domaine climatique et répondre aux attentes sociétales.
  • Le PEPR exploratoire Bridges a pour objectif de conforter l'image et la souveraineté de la France dans le sud-ouest de l’océan Indien et de renforcer le dialogue multilatéral régional.
  • Le PEPR exploratoire Ensemble (Futur de la collaboration numérique) a pour objectif de redéfinir en profondeur les outils collaboratifs numériques.
  • Le PEPR exploratoire Numpex (Numérique pour l’Exascale) a pour objectif de concevoir et développer les briques logicielles qui équiperont les futures "machines exascales" et de préparer les grands domaines applicatifs visant à exploiter pleinement les capacités de ces machines, aussi bien pour la recherche scientifique que le secteur industriel.

Pour en savoir plus

Le CNRS pilote ou co-pilote de 3 PPR

Autonomie, sport, océan et climat
  • Le PPR Autonomie a pour objectif de mobiliser tous les secteurs disciplinaires, les connaissances, dispositifs et outils existants pouvant faciliter l’autonomie des personnes, qu’elles soient concernées par le vieillissement ou une situation de handicap, et de concevoir des développements scientifiques pensés avec et pour les populations concernées. 
  • Le PPR Sport vise à financer des projets de recherche dans le domaine de la performance sportive
  • Le PPR Océan et climat est destiné à structurer les forces de recherche françaises pour mieux connaître cet écosystème et mieux le protéger autour de sept grands défis : prévoir les impacts du changement climatique en outre-mer, intensifier les recherches dans les océans polaires, améliorer la protection et la résilience des milieux marins, exploiter durablement les ressources de l’Océan, caractériser les facteurs de stress environnementaux en milieu marin, développer des programmes d’observation et de modélisation innovants et partager avec le grand public ces découvertes. 

Pour en savoir plus

Ethics and animal models

L’utilisation d’animaux dans la recherche demeure une pratique scientifique indispensable, rigoureusement encadrée dans laquelle l’éthique constitue un questionnement quotidien.

Recherche animale, pourquoi est-elle indispensable au progrès scientifique médical ?

Le GIRCOR est une association dédiée à la réflexion et la communication sur l'utilisation des modèles animaux en recherche. Il a été créé en 1992 sous l'impulsion d'Hubert Curien alors ministre de la recherche,  et compte aujourd'hui plus de quarante établissements adhérents parmi le public (CNRS, INSERM, INRAE,CEA, Universités...) et le privé (SANOFI, IPSEN, VIRBAC, LEEM, SIMV...). 

Le GIRCOR est présidé depuis 2015 par Ivan BALANSARD, Vétérinaire au Bureau Ethique et Modèles Animaux du CNRS. Investi dans le dialogue et la communication envers le grand public, le GIRCOR pilote la charte de transparence sur le recours aux animaux à des fins scientifiques et réglementaires en France.


La condition animale, une question d’actualité

La condition animale, et notamment l’utilisation d’animaux dans la recherche scientifique, est au cœur des préoccupations contemporaines. Pourtant, les chercheurs se sont imposés, à tort, le silence, laissant les citoyens dans l’ignorance de pratiques scientifiques réglementées, respectueuses de la sensibilité animale et guidées par un réflexion éthique permanente.

L'utilisation des modèles animaux dans la recherche, une pratique encore indispensable

Comprendre le vivant
L’utilisation de modèles animaux est essentielle pour décrypter le vivant. Aucune alternative à ce jour ne peut s'y substituer totalement.

Même si les méthodes in vitro (sur cellule) ou in silico (modélisation informatique) jouent un rôle important dans de nombreux projets de recherche, elles ne permettent pas, seules, de comprendre et de reproduire les interactions multiples au sein d’un organisme vivant.

La recherche nécessite tous les modèles (in vivo, in vitro, in silico) pour appréhender la complexité du vivant à des échelles différentes.

Des applications en santé
Etudier les animaux est souvent indispensable pour comprendre l’origine des pathologies humaines et mettre au point de nouvelles thérapies.

« Renoncer à l’utilisation de modèles animaux serait aller vers une médecine aveugle et dangereuse, contrevenant à toutes les règles de bioéthique et du droit international portant sur les essais cliniques chez l’Homme. » Catherine Jessus, directrice de l’INSB de 2013 à janvier 2019.

Des pratiques encadrées par une règlementation stricte et juste

Les pratiques des chercheurs sont fondées sur une règlementation stricte qui exige un niveau élevé de protection pour les animaux utilisés.

La réglementation en vigueur en France datant de février 2013 établit les différentes règles :

Espèces animales concernées
La réglementation protège les animaux vertébrés, y compris les formes larvaires autonomes ou fœtales évoluées, et les céphalopodes. Cela signifie qu'elle s'applique par exemple aux poissons, aux oiseaux et aux mammifères mais pas aux insectes. L'utilisation de primates est restreinte et l’utilisation de grands singes (comme les chimpanzés) est interdite en Europe.

Origine des animaux
Les animaux doivent provenir d’élevages ou de fournisseurs agréés.

Agrément des établissements
Tout établissement éleveur, fournisseur ou utilisateur doit être agréé par la préfecture. Un vétérinaire est désigné pour chaque établissement. Des inspections régulières sont réalisées.

Evaluation éthique et autorisation des projets de recherche
Tout projet de recherche qui inclut le recours à l'expérimentation animale doit faire l'objet d'une évaluation éthique favorable délivrée par un comité d'éthique agréé. Il doit obtenir une autorisation délivrée par le Ministère de l’Enseignement supérieur, de la Recherche et de l’Innovation.   

Les expériences potentiellement douloureuses doivent être pratiquées sous analgésie et/ou anesthésie appropriée

Structure de bien-être animal
Chaque établissement bénéficie d’une structure de bien-être animal chargée de suivre l’évolution des projets de recherche.

Cette règlementation veille à ce qu’aucune procédure impliquant des animaux ne soit menée s’il existe une méthode substitutive répondant au même objectif scientifique. La règle des 3 R constitue le socle de la réglementation.

Les animaux pour faire avancer la recherche

Malgré le développement de méthodes alternatives, l’expérimentation animale en recherche reste indispensable pour étudier toute la complexité du vivant. Mais on ne fait pas n’importe quoi ! Pour obtenir le droit de travailler sur des modèles animaux, il faut aujourd’hui remplir plusieurs critères et respecter un certain nombre de règles qui exigent un niveau de protection élevé pour les animaux utilisés. Une production du CNRS.
Texte : Estelle Rünneburger et Charlotte Pallud
Voix : Douglas Antonio Motion
Design : Loïc Kessler
Sous-titre : Aude Niclas


Une démarche éthique

La règle des 3 R : remplacer, réduire, raffiner

Depuis 1959, elle constitue le fondement éthique de l’utilisation des animaux à des fins scientifiques.

Remplacer –  utiliser d’autres modèles que le modèle animal, quand c’est possible :

  • Des modèles informatiques (in silico) ;
  • Des méthodes physico-chimiques, des cellules ou des organoïdes (in vitro)

            –  utiliser des modèles animaux moins sensibles (invertébrés comme la mouche drosophile ou le ver C. elegans…)

Réduire – Diminuer le nombre d’animaux utilisés :

  • Optimiser les études biostatistiques et le design expérimental
  • Favoriser le partage des données scientifiques (et la publication des résultats négatifs)
  • Favoriser le partage des échantillons biologiques

Raffiner – Minimiser les contraintes, le stress et la douleur :

  • Améliorer les conditions d’hébergement des animaux
  • Améliorer les protocoles d’anesthésie et d’analgésie
  • Privilégier les approches d’exploration non invasives (IRM, échographie…)
  • Etablir des points limites adaptés en maîtrisant l’évaluation du bien-être des animaux.

Chiffres clés

Les modèles animaux les plus utilisés en recherche1  :

  • 1Source : Ministère de l’Education supérieur, de la Recherche et de l’Innovation, 2019
Souris 61%
Poissons 12%
Rats 9%
Lapins 7%
Chiens et chats 0,31%
Primates 0,18%

The CNRS is committed to promoting sustainable development

Lors du Sommet du 25 septembre 2015 à New York, 193 pays ont adopté le Programme de développement durable à l’horizon 2030, articulé autour de 17 objectifs et de 169 cibles visant à mettre fin à toutes les formes de pauvreté et à lutter contre les inégalités dans un contexte de changement global.
Les Objectifs du développement durable visent à transformer nos sociétés pour les rendre plus justes, paisibles et prospères dans le respect de notre planète. Ils nécessitent l’implication de tous et doivent s’appuyer sur les connaissances scientifiques.

Le CNRS accompagne cette dynamique mondiale en développant la connaissance, l’innovation et les partenariats.

La recherche au CNRS couvre toutes les disciplines scientifiques et permet de traiter les enjeux à la fois propres à chacun des objectifs et à l’intersection de plusieurs objectifs : climat-océan-eau-santé ; eau-énergie-alimentation-biodiversité-éducation.

La liberté et la créativité des chercheurs du CNRS leur permettent d’engendrer des découvertes et d’apporter des innovations qui contribuent directement aux Objectifs du développement durable.

La recherche au CNRS, résolument internationale et de plus en plus multi-acteurs, est un vecteur puissant de partenariat à tous les niveaux. Le CNRS contribue fortement aux échanges entre pays et secteurs (académique, économique, financier, politique, associatif...).

Le CNRS s’implique dans des initiatives nationales et internationales pour relever les défis du développement durable : membre de l’Observatoire national sur le changement climatique, de la Fondation pour la recherche sur la biodiversité, il accueille le Global Hub de Future Earth ou encore le pôle européen de Urban Climate Change Research Network. Il se mobilise pour valoriser l’expertise de ses chercheurs dans les panels des Nations unies pour le climat et la biodiversité (GIEC, IPBES).

Cliquer sur les images pour télécharger les fiches

fiche 1

fiche 2

fiche 3

fiche 4

fiche 5

fiche 6

fiche 7

fiche 8

fiche 9

fiche 10

fiche 11

fiche 12

fiche 13

fiche 14

fiche 15

fiche 16

fiche 17

Task Force « CNRS Agenda 2030 »

Une Task Force « CNRS Agenda 2030 » est constituée auprès de la direction du CNRS pour traduire en questions scientifiques l’agenda politique, promouvoir les découvertes et valoriser les innovations qui s’inscrivent dans les Objectifs du développement durable. Elle est joignable à l’adresse :

Éthique, déontologie, intégrité scientifique et lancement d’alerte

L’éthique, la déontologie et l’intégrité scientifique sont au cœur des valeurs de l'établissement.

L’éthique nous invite à réfléchir aux valeurs qui motivent nos actes et à leurs conséquences et fait appel à notre sens moral et à celui de notre responsabilité. La déontologie réunit les devoirs et obligations imposés à une profession, une fonction ou une responsabilité. L'intégrité scientifique concerne, quant à elle, la « bonne » conduite des pratiques de recherche.

Au CNRS, ces questions sont confiées au référent déontologue, référent lancement d’alerte, référent intégrité scientifique, à la médiatrice et au comité d’éthique du CNRS.

Référent déontologue

La fonction de déontologue fait suite à la loi du 20 avril 2016, relative à la déontologie et aux droits et obligations des fonctionnaires, et à son décret d’application en avril 2017. Le référent déontologue est chargé, par la loi, de répondre aux demandes d’avis des agents et de leurs apporter des conseils sur la déontologie, notamment sur l’intégrité, la probité, la neutralité, la laïcité, le secret professionnel, l’indépendance de chercheurs, l’obéissance hiérarchique, le cumul des fonctions ou encore le conflit d’intérêt.

Modalités de saisine

Le déontologue peut être saisi par tout agent pour demander un avis lorsqu’il rencontre une difficulté en rapport à sa situation ou qu’il veut l’anticiper. L’ensemble des autorités du CNRS (directeurs d’unité, directions, présidence) peuvent aussi le solliciter pour toute question d’ordre déontologique. L’avis prononcé par le déontologue donne, en général, lieu à échange avec la personne qui le saisit.


L'activité du déontologue est couverte par le secret professionnel dans le but de protéger l’agent et de garantir l’indépendance du déontologue dans le cadre de l’exercice de sa mission. Le déontologue n’informe personne de ses échanges avec ceux qui le saisissent ; les seules informations transmises sont anonymisées dans son rapport annuel.

La charte déontologique du CNRS

La charte française de déontologie des métiers de la recherche

Le déontologue

La fonction est occupée, depuis le 1er septembre 2018, par Joël Moret-Bailly, professeur des universités, juriste.
Contact :

Référent lancement d’alerte

La mission du référent lancement d’alertes, organisée par une loi de 2013 et une loi de 2016, est de vérifier la recevabilité et d’organiser le traitement des alertes notamment en cas de commission d’un crime ou d’un délit de violation grave et manifeste des lois et règlements au sein du CNRS. L’utilisation de la procédure interne de lancement d’alertes permet d’assurer la protection du lanceur d’alerte 1) de bonne foi 2) qui lance l’alerte "en interne" afin de régler la situation à l’origine de l’alerte.

Modalités de saisine

Le référent lanceur d’alerte reçoit les signalements de tout agent exerçant ses fonctions dans une structure du CNRS, ainsi que tout collaborateur extérieur (prestataire) ou collaborateur occasionnel du CNRS qui relate ou témoigne de bonne foi et de manière désintéressée de faits constitutifs de crimes ou de délits, d'une violation grave et manifeste de la loi ou d'une situation de conflits d’intérêts.

Le signalement, qui ne peut être anonyme, doit être le plus circonstancié possible et accompagné de tous faits, informations ou documents de nature à l’étayer. Dès la réception de la demande, un accusé de réception indiquant un délai prévisionnel de traitement des faits signalés est délivré à l’agent. Les signalements font l’objet d’un premier examen au sein d’un collège coordonné par le référent lanceur d’alerte et composé du référent déontologue, du référent intégrité scientifique, du directeur des ressources humaines (ou son représentant) et de la directrice des affaires juridiques (ou son représentant). Le dispositif mis en place garantit la confidentialité de l’identité des auteurs du signalement, des personnes mises en cause et des informations recueillies par les destinataires du signalement.


Dès lors qu’il suit la procédure légale, le lanceur d’alerte ne peut subir de conséquences péjoratives quant au lancement de son alerte. Le référent lanceur d’alerte garantit la confidentialité de l’identité tant des lanceurs d’alerte que des personnes mis en cause.

Le référent lancement d'alerte

La fonction est occupée, depuis le 1er septembre 2018, par Joël Moret-Bailly, professeur des universités, juriste.
Pour signaler une alerte : 

Référent intégrité scientifique

L’intégrité scientifique se réfère à l’ensemble des règles et valeurs qui régissent l’activité scientifique et en garantissent le caractère honnête. Elle est  indispensable à la crédibilité de la science et à la confiance que lui accorde la société. On désigne, en général les méconduites scientifiques par la trilogie des fraudes FFP (Fabrication de données, Falsification de données, Plagiat), complétée d’une large « zone grise », qui comprend, entre autres, des comportements critiquables relatifs aux publications ou encore des expertises faites en cachant des liens d’intérêt.

Le Référent Intégrité Scientifique (RIS) anime la Mission à l’Intégrité Scientifique (MIS), qui intervient d’une part dans le traitement des allégations de méconduites et d’autre part, de façon concertée avec le référent déontologue, dans la formation et la sensibilisation des personnels aux questions d’intégrité scientifique et de déontologie.

La MIS comprend à ce jour, six personnes :

  • Le Référent intégrité scientifique du CNRS : Rémy Mosseri1, directeur de recherche émérite au CNRS, Laboratoire de physique théorique de la matière condensée (CNRS/Sorbonne Université). Physicien
  • Quatre chargés de mission :
    • Christian Jutten2, professeur émérite à l’Université de Grenoble Alpes, Laboratoire Grenoble images parole signal automatique (CNRS/Université Grenoble Alpes). Sciences de l’information.
    • Lucienne Letellier3, directrice de recherche émérite CNRS à l’Institut de biologie intégrative de la cellule (CNRS/CEA/Université Paris-Saclay). Biophysicienne.
    • Cécile Michel4, directrice de recherche CNRS, Laboratoire Archéologies et sciences de l’antiquité (CNRS/Université Paris 1 Panthéon-Sorbonne/Université Paris Nanterre/Ministère de la culture) et professeure à l'Université de Hambourg. Historienne. Archéologue
    • Caroline Strube5, chargée de recherche CNRS, Laboratoire de neurosciences cognitives (CNRS/Aix-Marseille université) en charge des questions de formation. Biologiste.
  • La responsable administrative : Dorothée Peitzmann6

mis membres

Modalités de saisine et traitement des allégations

Les investigations sont régies par les principes suivants : la confidentialité qui s’applique à l’ensemble de la procédure ;  la transparence quant aux procédures elles-mêmes ; la protection des personnes impliquées ; la présomption d’innocence concernant la personne visée par une allégation ; l’information rapide des personnes mises en cause ; une attention particulière apportée aux potentiels conflits d’intérêt dans le choix des experts ; l’accompagnement des personnes injustement accusées pour les aider à restaurer leur réputation.

Le RIS est le point d’entrée unique des allégations. Elles peuvent être déposées par toute personne : celle-ci peut alors demander que son identité soit le cas échéant gardée confidentielle (même dans les échanges avec la direction du CNRS). En corollaire de cette garantie, les signalements anonymes sont proscrits.

L’allégation n'est recevable que si le CNRS a été, au moment des faits, l’employeur de la personne (ou d’une des personnes) mise en cause, ou bien de la personne qui s’estime lésée par une méconduite (par exemple en cas de plagiat). Dans certains cas néanmoins, en fonction de l’appréciation qu’il portera sur le préjudice qui pourrait être porté à l’organisme, le RIS pourra demander à être associé, à titre d’observateur, à l’enquête.

Une première étape consiste à qualifier l’allégation et à vérifier si des RIS d'autres universités ou organismes de recherche doivent être associés à l’investigation. Les personnes mises en cause seront rapidement informées et il leur sera demandé de répondre à l’allégation déposée. La MIS débute alors sa phase d'expertise pendant laquelle peuvent intervenir des experts individuels ou une commission d’enquête. Le RIS rédige ensuite un rapport final destiné au PDG du CNRS, qui décidera alors des dispositions à prendre, et en particulier d’une éventuelle suite disciplinaire.


Voir le site de la mission à l’intégrité scientifique du CNRS

Le référent intégrité scientifique

La fonction de référent intégrité scientifique (RIS) a été créée en août 2018 au CNRS. Cette fonction est occupée par Rémy Mosseri, directeur de recherche au CNRS, physicien.
Contact :


Nommée par le Président-directeur général, la médiatrice du CNRS intervient dans la prévention et la gestion des difficultés relationnelles et des conflits interpersonnels dans le cadre du travail, qui, lorsqu’ils perdurent, entrainent de la souffrance ou de la démotivation au niveau individuel et des dysfonctionnements au niveau collectif.

Elle peut être saisie par toute personne, concernée directement ou non par une difficulté relationnelle.

Par des entretiens confidentiels, elle contribue à établir ou rétablir une communication entre les parties prenantes, étape indispensable pour créer les conditions nécessaires à l’installation d’une confiance réciproque en vue de favoriser l’émergence de solutions et l’atteinte d’un accord.

Dans le respect du Code National de Déontologie du Médiateur, elle met en œuvre les principes fondateurs de la médiation que sont l’indépendance, la confidentialité des échanges, l'écoute, l’impartialité, la neutralité, et le caractère volontaire de la démarche.

Sont exclus de son champ d’intervention les situations mettant en jeu l’intégrité scientifique (mission confiée au référent intégrité scientifique du CNRS, M. Rémi MOSSERI) ou la déontologie (mission confiée au Déontologue du CNRS, M. Joël Moret-Bailly).

Dans le cadre de cette mission, la médiatrice peut être amenée à faire des observations ou des propositions d'amélioration d’organisation ou de fonctionnement. Elle ne dispose cependant d’aucun pouvoir décisionnaire.

Elle adresse chaque année un rapport d'activité anonymisé au Président-directeur général et rend compte également devant le CHSCT du CNRS.

La médiatrice

Pascale Beyma a été nommée médiatrice du CNRS le 1er Juin 2021.

Contact :

Le Comité d’éthique du CNRS

Créé en 1994, le Comité d’éthique du CNRS (COMETS) est une instance consultative et indépendante dont les avis sont publics. Placé auprès du Conseil d’administration du CNRS, le COMETS traite des questions dont le saisissent le Conseil d’administration, le Conseil scientifique ou le Directeur général du CNRS. Il a en outre la faculté d’autosaisine. Son indépendance lui permet d’aborder librement la portée éthique des grands enjeux impliquant la recherche.


Le COMETS engage des réflexions sur les questions éthiques générales suscitées par la pratique de la recherche et liées :

  • Aux conséquences sociales et morales du développement des sciences et de leurs applications pratiques ;
  • Aux principes qui régissent les comportements individuels des chercheurs et le fonctionnement des instances du CNRS ;
  • À l’exercice de la science elle-même.

À l’issue de ces réflexions, il appartient au COMETS, de formuler des recommandations relatives à la définition, à la justification et à l’application de règles relatives à l’éthique et à la déontologie de la recherche. Par ses avis et les actions de formation qu’il mène ou auxquelles il participe, le COMETS attire l’attention des personnels de recherche et de direction sur les dimensions éthiques et sociétales de toute recherche. Ce faisant, il vise à éclairer l’exercice de la liberté de recherche en regard des devoirs et responsabilités que ces personnels ont vis-à-vis du CNRS et plus généralement de la société.

Le COMETS est une instance de réflexion ; ce n’est ni un comité opérationnel d’éthique chargé de donner une accréditation à des projets, ni une instance de déontologie traitant des infractions aux règles d’intégrité scientifique. Il ne statue pas sur des cas particuliers, qu’il s’agisse de projets scientifiques ou d’infractions à la déontologie des chercheurs..

La fiche de présentation du COMETS

Voir le site du Comité d'éthique


Sa présidente est, depuis le 1er octobre 2021, Christine Noiville, juriste, directrice de recherche au CNRS, directrice de l’Institut des sciences juridique et philosophique de la Sorbonne (université Panthéon-Sorbonne, CNRS), présidente du Haut comité pour la transparence et l’information sur la sécurité nucléaire (HCTISN). Contact :